nabla算子

基础

=exx+eyy+ezz\nabla = \vec{e_x}\frac{\partial}{\partial x} + \vec{e_y}\frac{\partial}{\partial y} + \vec{e_z}\frac{\partial}{\partial z}

fdivf\nabla \cdot \vec{f} \equiv div \vec{f}

×frotf\nabla \times \vec{f} \equiv rot \vec{f}

ϕgradϕ\nabla \phi \equiv grad \phi

积分公式

  • Gauss积分公式

SfdS=VfdV\oint_S \vec{f}\cdot d\vec{S} = \int_V \nabla \vec{f} dV

  • Stokes定理

Lfdl=S(×f)dS\oint_L \vec{f}\cdot d\vec{l} = \int_S(\nabla \times \vec{f})\cdot d\vec{S}

  • Green公式

ψϕdS=V(ψ2ϕ+ψϕ)dV\oint \psi \nabla \phi \cdot d\vec{S} = \int_V(\psi\nabla^2\phi+\nabla\psi\cdot\nabla\phi)dV

(ψϕϕψ)dS=V(ψ2ϕϕ2ψ)dV\oint(\psi\nabla\phi-\phi\nabla\psi)\cdot d\vec{S}=\int_V(\psi\nabla^2\phi-\phi\nabla^2\psi)dV

  • 亥姆霍兹定理:任意矢量可以分解成无源场和无旋场之和

f=ϕ+×A\vec{f} = \nabla\phi+\nabla\times\vec{A}

常用公式

2ϕ=()ψ2f=(f)×(×f)×ϕ=0,(×f)(ϕψ)=ϕψ+ψϕ(fg)=f×(×g)+g×(×f)+(f)g+(g)f(ϕf)=ϕ(f)+f(ϕ)(f×g)=g(×f)f(×g)×(ϕf)=ϕ(×f)f×(ϕ)×(f×g)=(g)f(f)g+f(g)g(f).\begin{aligned} &\nabla^2\phi=(\nabla\cdot\nabla)\psi \\ &\nabla^2\vec{f}=\nabla(\nabla\cdot\vec{f})-\nabla\times(\nabla\times\vec{f}) \\ &\nabla\times\nabla\phi=0, \quad \nabla\cdot(\nabla\times\vec{f}) \\ &\nabla(\phi\psi) = \phi\nabla\psi + \psi\nabla\phi \\ &\nabla(\vec{f}\cdot\vec{g})=\vec{f}\times(\nabla\times\vec{g})+\vec{g}\times(\nabla\times\vec{f})+(\vec{f}\cdot\nabla)\vec{g}+(\vec{g}\cdot\nabla)\vec{f} \\ &\nabla\cdot(\phi\vec{f}) = \phi(\nabla\cdot\vec{f})+\vec{f}\cdot(\nabla\phi) \\ &\nabla\cdot(\vec{f}\times\vec{g}) = \vec{g}\cdot(\nabla\times\vec{f})-\vec{f}\cdot(\nabla\times\vec{g}) \\ &\nabla\times(\phi\vec{f})=\phi(\nabla\times\vec{f})-\vec{f}\times(\nabla\phi) \\ &\nabla\times(\vec{f}\times\vec{g}) = (\vec{g}\cdot\nabla)\vec{f}-(\vec{f}\cdot\nabla)\vec{g}+\vec{f}(\nabla\cdot\vec{g})-\vec{g}(\nabla\cdot\vec{f}). \end{aligned}

对一些简单函数的作用

r=3,r=rr,×r=0,1r=rr3,f(r)=f(r)rr,21r=4πδ(r)×(f(r)r)=0,r=I(ar)=(a)r=a,eiar=iareiar.\begin{aligned} &\nabla\cdot\vec{r}=3, \quad \nabla r = \frac{\vec{r}}{r}, \quad \nabla\times\vec{r} = 0, \\ &\nabla\frac{1}{r} = -\frac{\vec{r}}{r^3}, \quad \nabla f(r)=f(r')\frac{\vec{r}}{r}, \quad \nabla^2\frac{1}{r} = -4\pi\delta(\vec{r}) \\ &\nabla\times(f(r)\vec{r})=0, \quad \nabla\vec{r}=\overleftrightarrow{I} \\ &\nabla(\vec{a}\cdot\vec{r})=(\vec{a}\cdot\nabla)\vec{r}=\vec{a}, \quad \nabla e^{i\vec{a}\cdot\vec{r}}=i\vec{a}\vec{r}e^{i\vec{a}\cdot\vec{r}}. \end{aligned}

球坐标

=err+eθ1rθ+eϕ1rsinθϕψ=ψrer+1rψθeθ+1rsinθψϕeϕA=1r2r(r2Ar)+1rsinθθ(sinθAθ)+1rsinθϕ(Aϕ)×A=1rsinθ[θ(sinθAϕ)ϕ(Aθ)]er+1r[1sinθϕ(Ar)r(rAϕ)]eθ+1r[r(rAθ)θAr]eϕ2ψ=1r2r(r2ψr)+1r2sinθθ(sinθψθ)+1r2sin2θ2ψϕ2.\begin{aligned} &\nabla = \vec{e_r}\frac{\partial}{\partial r}+\vec{e_\theta}\frac{1}{r}\frac{\partial}{\partial \theta} + \vec{e_\phi}\frac{1}{r\sin \theta}\frac{\partial}{\partial \phi} \\ &\nabla \psi = \frac{\partial \psi}{\partial r}\vec{e_r} + \frac{1}{r}\frac{\partial \psi}{\partial \theta}\vec{e_\theta}+\frac{1}{r\sin \theta}\frac{\partial \psi}{\partial \phi}\vec{e_\phi} \\ &\nabla \cdot \vec{A} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2 A_r) + \frac{1}{r\sin \theta}\frac{\partial}{\partial \theta}(\sin\theta A_\theta) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}(A_\phi) \\ &\nabla\times\vec{A} = \frac{1}{r\sin\theta}\left[\frac{\partial}{\partial \theta}(\sin\theta A_\phi)-\frac{\partial}{\partial\phi}(A_\theta)\right]\vec{e_r} + \frac{1}{r}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\phi}(A_r)-\frac{\partial}{\partial r}(rA_\phi)\right]\vec{e_\theta} +\frac{1}{r}\left[\frac{\partial}{\partial r}(rA_\theta)-\frac{\partial}{\partial\theta}A_r\right]\vec{e_\phi} \\ &\nabla^2\psi = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2}. \end{aligned}

柱坐标

=err+eθ1rθ+ezzψ=ψrer+1rψθeθ+ψzezA=1rr(rAr)+1rθAθ+zAz×A=(1rAzθAθz)er+(ArzAzr)eθ+1r(r(rAθ)Arθ)ez2ψ=1rr(rψr)+1r22ψθ2+2ψz2.\begin{aligned} &\nabla = \vec{e_r}\frac{\partial}{\partial r}+\vec{e_\theta}\frac{1}{r}\frac{\partial}{\partial\theta} + \vec{e_z}\frac{\partial}{\partial z} \\ &\nabla\psi = \frac{\partial\psi}{\partial r}\vec{e_r}+\frac{1}{r}\frac{\partial\psi}{\partial\theta}\vec{e_\theta}+\frac{\partial\psi}{\partial z}\vec{e_z} \\ &\nabla\cdot\vec{A} = \frac{1}{r}\frac{\partial}{\partial r}(rA_r)+\frac{1}{r}\frac{\partial}{\partial\theta}A_\theta+\frac{\partial}{\partial z}A_z \\ &\nabla\times\vec{A} = \left(\frac{1}{r}\frac{\partial A_z}{\partial\theta} - \frac{\partial A_\theta}{\partial z}\right)\vec{e_r} + \left(\frac{\partial A_r}{\partial z} -\frac{\partial A_z}{\partial r}\right)\vec{e_\theta} + \frac{1}{r}\left(\frac{\partial}{\partial r}(rA_\theta)-\frac{\partial A_r}{\partial \theta}\right)\vec{e_z} \\ &\nabla^2\psi = \frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial \psi}{\partial r}) + \frac{1}{r^2}\frac{\partial^2\psi}{\partial \theta^2}+\frac{\partial^2 \psi}{\partial z^2}. \end{aligned}


  • 摘抄自郑大师电磁学讲义